Интерактивные рекоммендеры: как создавать, как работают

Как строить рекомендательные системы? Какие модели машинного обучения можно применять? Какие проблемы решают интерактивные рекоммендеры, а какие – нет? Какие инструменты могут быть полезны для e-commerce портала? Об этом – в докладе Big Data-инженера ЕРАМ Екатерины Сотенко «Обзор подходов построения интерактивных рекоммендеров», с которым она выступила на самарском ITsubbotnik этой весной. Ниже – видеозапись доклада, еще ниже – его краткое содержание.

Читать дальше →

Что происходит в интернете за минуту в 2017 году (инфографика)

Сколько времени вы сегодня проводите в интернете? Можем поспорить — больше, чем год назад. Количество данных, загружаемых в интернет за минуту с каждым годом растет в арифметической прогрессии, и этого не остановить. Например, в 2016 году пользователи вводили в GoogleЗапись Что происходит в интернете за минуту в 2017 году (инфографика) впервые появилась
AIN.UA

[Перевод — recovery mode ] 10 типов структур данных, которые нужно знать + видео и упражнения

Екатерина Малахова, редактор-фрилансер, специально для блога Нетологии адаптировала статью Beau Carnes об основных типах структур данных.

«Плохие программисты думают о коде. Хорошие программисты думают о структурах данных и их взаимосвязях», — Линус Торвальдс, создатель Linux.

Структуры данных играют важную роль в процессе разработки ПО, а еще по ним часто задают вопросы на собеседованиях для разработчиков. Хорошая новость в том, что по сути они представляют собой всего лишь специальные форматы для организации и хранения данных.

В этой статье я покажу вам 10 самых распространенных структур данных. Читать дальше →

[Перевод] R и большие данные: использование Replyr

replyr — сокращение от REmote PLYing of big data for R (удаленная обработка больших данных в R).

Почему стоит попробовать replyr? Потому что он позволяет применять стандартные рабочие подходы к удаленным данным (базы данных или Spark).

Можно работать так же, как и с локальным data.frame. replyr предоставляет такие возможности:

  • Обобщение данных: replyr_summary().
  • Объединение таблиц: replyr_union_all().
  • Связывание таблиц по строкам: replyr_bind_rows().
  • Использование функций разделения, объединения, комбинирования (dplyr::do()): replyr_split(), replyr::gapply().
  • Аггрегирование/распределение: replyr_moveValuesToRows() / replyr_moveValuesToColumns().
  • Отслеживание промежуточных результатов.
  • Контроллер объединений.

Скорее всего, вы всё это делаете с данными локально, поэтому такие возможности сделают работу со Spark и sparklyr гораздо легче.

replyr — продукт коллективного опыта использования R в прикладных решениях для многих клиентов, сбора обратной связи и исправления недостатков.

Примеры ниже.
Читать дальше →