[Из песочницы] Обзор C++ библиотек глубокого обучения Apache.SINGA, tiny-dnn, OpenNN

Наслаждаясь созданием моделей в Питоне на замечательных Deep Learning фреймворках типа Keras или Lasagne, время от времени хочется посмотреть, а что там интересного появилось для C++ разработчиков, помимо мейнстримовых TensorFlow и Caffe. Я решил поближе посмотреть на трех представителей: tiny-dnn, Apache.SINGA и OpenNN. Краткое описание опыта установки, сборки и использования под Windows Вы и найдете под катом.

Читать дальше →

Neural conversational models: как научить нейронную сеть светской беседе. Лекция в Яндексе

Хороший виртуальный ассистент должен не только решать задачи пользователя, но и разумно отвечать на вопрос «Как дела?». Реплик без явной цели очень много, и заготовить ответ на каждую проблематично. Neural Conversational Models — сравнительно новый способ создания диалоговых систем для свободного общения. Его основа — сети, обученные на больших корпусах диалогов из интернета. Борис hr0nix Янгель рассказывает, чем хороши такие модели и как их нужно строить.

Под катом — расшифровка и основная часть слайдов.

Читать дальше →

[Перевод] AWS DeepLearning AMI — почему (и как) его стоит использовать

Иногда хорошие вещи приходят бесплатно …

Что такое AMI?

Для тех из вас, кто не знает, что такое AMI, позвольте мне процитировать официальную документацию по этому вопросу:

Amazon Machine Image (AMI) предоставляет данные, необходимые для запуска экземпляра виртуального сервера в облаке. Вы настраиваете AMI при запуске экземпляра, и вы можете запустить столько экземпляров из AMI, сколько вам нужно. Вы также можете запускать экземпляры виртуальных машин из множества различных AMI, сколько вам нужно.

Этого должно быть достаточно, чтобы понять остальную часть статьи, однако я бы посоветовал потратить некоторое время на официальную документацию об AMI.

Идем далее…