[Из песочницы] Как научить свою нейросеть генерировать стихи

Умоляю перестань мне сниться
Я люблю тебя моя невеста
Белый иней на твоих ресницах
Поцелуй на теле бессловесном

Когда-то в школе мне казалось, что писать стихи просто: нужно всего лишь расставлять слова в нужном порядке и подбирать подходящую рифму. Следы этих галлюцинаций (или иллюзий, я их не различаю) встретили вас в эпиграфе. Только это стихотворение, конечно, не результат моего тогдашнего творчества, а продукт обученной по такому же принципу нейронной сети.

Вернее, нейронная сеть нужна лишь для первого этапа — расстановки слов в правильном порядке. С рифмовкой справляются правила, применяемые поверх предсказаний нейронной сети. Хотите узнать подробнее, как мы это реализовывали? Тогда добро пожаловать под кат.
Читать дальше →

Делаем спеллчекер на фонетических алгоритмах своими руками

Запустив в продакшене супер-мега-навороченную систему нечёткого поиска с поддержкой морфологии, которая показывала на тестовый кейсах блестящие результаты, разработчик сталкивается с суровой реальностью. Пользователи, избалованные автокоррекцией Яндекса и Гугла, делают ошибки и опечатки. И вместо аккуратной страницы с результатами поиска получают грустный смайлик — машина не поняла запроса.

Машинный спеллчекинг — это целое искусство и не зря поисковые гиганты нанимают талантливых математиков работать над этой задачей. Но существуют и простые механизмы автокоррекции, основанные на фонетических принципах, которые уже способны давать результат и улучшать пользовательский опыт. О них и поговорим в статье. Тем более, что они так или иначе являются фундаментом для более сложных решений.

В конце статьи приводится ссылка на открытый датасет с ошибками и опечатками. Можно собрать по нему ценную статистику и потестировать свои алгоритмы спеллчекинга. Читать дальше →

У компании есть еще похожие вакансии

2 марта я выступал с докладом на Data Science Meetup, который проходил в нашем офисе. Я рассказал об опыте создания алгоритма по схлопыванию похожих вакансий в поисковой выдаче. По ссылке вы можете ознакомиться с отчетом о прошедшей встрече, там же будут доступны записи выступлений и ссылки на презентации. Для тех же, кто предпочитает воспринимать информацию в текстовом виде, я написал эту статью.

Мы столкнулись с проблемой, когда в поиске по вакансиям выдача заполнялась одинаковыми вакансиями от одного работодателя. Например, по запросу «водитель» посетитель мог получить 30—40 вариантов одной и той же вакансии на одну и ту же позицию.

Читать дальше →

Технологический стек классификации текстов на естественных языках

В данном посте мы рассмотрим современные подходы, применяемые для классификации текстов на естественном языке по их тематикам. Выбранные методы работы с документами определены общей сложной спецификой задачи – зашумлёнными обучающими выборками, выборками недостаточного размера или вообще отсутствующими выборками, сильным перекосом размеров классов и так далее. В общем – реальные практические задачи. Прошу под кат.
Читать дальше →

Разделение текста на предложения с помощью Томита-парсера

Чтобы подготовить русскоязычные тексты для дальнейшего анализа, мне однажды понадобилось разбить их на предложения. Разумеется, автоматически. Что приходит на ум в первую очередь, если нужно разделить текст на предложения? Разбить по точкам — угадал?

Если вы начнете это делать, то довольно быстро столкнетесь с тем, что точка — это не всегда разделитель предложений (“т.к.”, “т.д.”, “т.п.”, “пр.”, “S.T.A.L.K.E.R.”). Причем эти токены не всегда будут исключениями при разбивке текста на предложения. Например, “т.п.” может быть в середине предложения, а может и в конце.

Вопросительный и восклицательный знак тоже не всегда разделяют текст на предложения. Например, “Yachoo!”. Предложения могут разделять и другие знаки, например, двоеточие (когда следует список из отдельных утверждений).

Поэтому я долго не думая поискал готовый инструмент и остановился на Томита-парсере от Яндекса. О нем и расскажу.
Читать дальше →

[Из песочницы] Как собрать биграммы для корпуса любого размера на домашнем компьютере

В современной компьютерной лингвистике биграммы, или в общем случае n-граммы, являются важным статистическим инструментом. В статье мы расскажем с какими трудностями можно столкнуться при расчёте биграмм на большом корпусе текстов и приведём алгоритм, который можно использовать на любом домашнем компьютере.
Читать дальше →